
www.elsevier.com/locate/jmr

Journal of Magnetic Resonance 182 (2006) 96–105
Spectral reconstruction methods in fast NMR: Reduced
dimensionality, random sampling and maximum entropy

Mehdi Mobli a, Alan S. Stern b, Jeffrey C. Hoch a,*

a Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue,

Farmington, CT 06030-3305, USA
b Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, MA 02142, USA

Received 26 April 2006; revised 25 May 2006
Available online 11 July 2006
Abstract

The need to reduce data acquisition times of multidimensional NMR experiments has fostered considerable interest in novel data
acquisition schemes. A recurring theme is that of reduced dimensionality experiments, in which time evolutions in the indirect dimensions
are incremented together, rather than independently. Spectral analysis of such data is carried out using methods such as filtered back-
projection, GFT, or parametric signal modeling. By using Maximum Entropy reconstruction of reduced-dimensionality data, we show
that the artifacts that arise in reduced dimensionality experiments are intrinsic to the data sampling, and are not, in general, the result of
the methods used to compute spectra. Our results illustrate that reduced dimensionality is a special case of non-uniform sampling in the
time domain. We show that MaxEnt reconstruction yields more accurate spectra for reduced dimensionality data than back-projection
reconstruction and that randomly choosing time increments based on an exponentially weighted distribution is more efficient, with fewer
artifacts, than the systematic coupling of time increments used in most reduced dimensionality approaches.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recent advances in hardware and pulse sequence design
have contributed to very active research in methods requir-
ing less data for the reconstruction of multidimensional
NMR experiments (for detail see reviews [1,2]). These
methods are especially appropriate for the analysis of
bio-molecules, where multiple multidimensional experi-
ments are employed to enable sequence specific assignment
and to obtain structural information, typically requiring
days or weeks of instrument time. The time saved by using
fewer data samples is not only important for improving the
utilization of expensive spectrometers but is also crucial for
studies of biomolecules that are weakly soluble or margin-
ally stable. Furthermore, the introduction of higher field
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magnets requires more frequent sampling (to avoid alias-
ing) and a concomitant increase in the number of samples
needed to probe longer evolution periods.

A promising approach is that of reduced dimensionality
experiments, which mainly rely on coupling evolution peri-
ods in the indirect dimensions [3–5]. Several methods have
been introduced to facilitate the processing and analysis of
data collected in this manner. The GFT method uses a
G-matrix based on phase encoding of the linear combina-
tion of the coupled evolution periods prior to Fourier
transformation in order to retrieve specific chemical shift
information [6]. The back-projection reconstruction
(BPR) method uses the relation between the time and fre-
quency dimensions embodied in the Fourier transforma-
tion: a cross-section in the time domain through the
origin with an angle a corresponds to a projection in the
frequency domain onto an axis passing through the origin
at the same angle. Various projections are reconstituted
into a higher dimensional spectrum using BPR [7]. The
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related filtered-BPR method applies an apodization step in
the inverse Radon transform prior to the reconstruction of
the spectrum [8]. The APSY method [9] analyzes each pro-
jection separately and then uses the information from all
projections to determine peak frequencies using vector
algebra. The EVOCOUP approach [10] similarly does not
attempt reconstruction of the spectrum but uses singular
value decomposition (SVD) to extract peak information
from the known linear combination of chemical shifts.
The HIFI method [11] uses Bayesian methods to analyze
individual projections and utilizes prior knowledge of shift
distributions to guide the choice of projection angle.

An alternative to reduced dimensionality is to treat the
aforementioned cross-sections as incomplete multidimen-
sional data. This approach requires methods for computing
the spectrum that do not rely on uniformly sampled data.
Suitable methods include maximum entropy (MaxEnt)
reconstruction [12,13] maximum likelihood methods [14],
multi-way decomposition [15,16], and Lagrange interpola-
tion FT [17]. These methods have previously been employed
to reduce experiment time by non-uniform sampling of the
indirect dimensions using various strategies for selecting
subsets of the data. Furthermore, these methods can also
be used in conjunction with reduced dimensionality
approaches to enhance their utility [18]. Despite the obvious
connection between reduced dimensionality methods and
non-uniform sampling, the two have so far not been system-
atically compared. In this paper, we demonstrate that Max-
Ent reconstruction is a general platform for the
reconstruction of non-uniformly sampled data regardless
of sampling strategy. We explicitly use the term ‘‘recon-
struction’’ in conjunction with ‘‘MaxEnt’’, to emphasize
that we are computing the spectrum. In contrast, paramet-
ric methods of spectrum analysis attempt to extract signals
parameters, such as frequencies, amplitudes, linewidths and
phases. Although these methods can be used to construct a
spectrum, in general such a spectrum is not necessary, and
the table of signal parameters can be used for further pro-
cessing, such as assignment. A drawback of parametric
methods, however, is that they make assumptions about
the signal, and when these assumptions are not strictly
met the derived signal parameters are subject to bias. Max-
Ent reconstruction makes no assumptions about the nature
of the signal, and for this reason is generally more robust for
determining accurate frequencies of signal components
than parametric methods [13].

Considering coupling of evolution periods as a non-uni-
form sampling method, MaxEnt will enable us to distin-
guish between artifacts introduced by the processing
method and those that are intrinsic to the sampling method.
We show that reduced dimensionality data, whether pro-
cessed by MaxEnt reconstruction or BPR, lead to similar
artifacts. These artifacts arise from the regular nature of
the sampling, and not from the algorithm used to process
the data. Destroying this regularity by adding a degree of
randomness to the sampling diminishes the structure of
the artifacts, greatly improving spectral quality.
2. Theory

The theory of maximum entropy and its implementation
into the Rowland NMR Toolkit has been extensively
reviewed [19,20] and therefore only a brief summary will
be given here. Similarly the theory of back-projection
reconstruction is well documented [4] and only an overview
will be given here.

2.1. Maximum entropy

MaxEnt reconstruction solves the inverse problem in
which the information content of a trial spectrum is mini-
mized while ensuring that its inverse discrete Fourier trans-
form (DFT) agrees with the observed data to within the
experimental error of the data. The agreement of the recon-
struction with the data is measured using an unweighted v2

statistic:

CðfÞ ¼
XN�1

k¼0

jmk � dkj2; ð1Þ

where mk is the mock data given by the inverse DFT of the
trial spectrum with elements fi and dk is the experimental
data. The measure of the information content is based on
an entropy functional [13] resembling:

Sðf Þ ¼ �
XM�1

i¼0

jfij
def

log
jfij
def

� �
ð2Þ

where M is the number of points in the spectrum, and def is
a scale factor. By maximizing S (f) subject to the constraint
C (f) � C0, where C0 is an estimate of the experimental er-
ror, MaxEnt reconstruction determines the spectrum con-
taining the least information, consistent with the
measured data.

2.2. Back projection reconstruction

BPR relies on the relation between the time and frequen-
cy domains through the projection–cross-section theorem
[4]. For a two-dimensional spectrum F, the projection
Pa (x) onto a line passing through the origin at an angle
a is given by:

PaðxÞ ¼
Z 1

�1
f ðx cos a� s sin a;x sin aþ s cos aÞds ð3Þ

The cross-section Sa (t) at angle a through the time domain
data D is given by:

SaðtÞ ¼ Dðt cos a; t sin aÞ: ð4Þ
The projection cross-section theorem says that if F is the
Fourier transform of D, then Pa is the one-dimensional
Fourier transform of Sa.

Back-projection algorithms use this relation. Starting
with a cross-section Sa, one applies a Fourier transform
to obtain Pa which is ‘‘back-projected’’ onto the two-di-
mensional frequency plane: the value of Pa (x) is replicated
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Fig. 1. Sampling the time domain with coupled evolution periods. The small dots define the Nyquist grid and the large dots represent sampled data points.
(A) Radial on-grid sampling. (B) Radial off-grid sampling used in the BPR method. (C) An on-grid approximation of the sampling shown in (B),
appropriate for processing with MaxEnt.
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along the line perpendicular to the line through the origin
with angle a and intersecting the line at the point x.
Back-projections corresponding to different cross-sections
are combined to yield a spectrum. Various BPR algorithms
differ in the way they combine these back-projections. Fil-
tered back-projection algorithms apply a weighting func-
tion to Sa prior to the computation of Pa [8].

The sample points belonging to the cross-section Sa (t) all
lie on a ray emanating from the origin at an angle a. We refer
to this as a radial sampling scheme. Note that sampling
using coupled evolution periods is a form of radial sampling.
The nth sample along a given ray then has evolution times:

t1 ¼ nDt sin a; ð5Þ
t2 ¼ nDt cos a; ð6Þ

where Dt is the inverse of the spectral width along the ray.
In order to avoid aliasing it is generally necessary to choose
Dt so that 1/Dt is larger than the spectral width in F1 or F2.
Normally when collecting multi-dimensional data the evo-
lution times are all multiples of fixed dwell times Dt1, Dt2,
etc.; such points determine a uniform grid in the time do-
main which we call the Nyquist grid. In radial sampling,
however, most choices of a lead to evolution times that
do not lie on this grid. We refer to this situation as ‘‘off-
grid’’ sampling. One can approximate radial sampling
using on-grid samples by adjusting the evolution times to
the nearest grid point (Fig. 1).
3. Methods

3.1. Experimental data

Triple resonance data (HNCO) was collected using a
15N/13C labeled ubiquitin sample obtained commercially
(AVR Protein). The number of data points collected was
512 in the proton, 128 in the carbon and 52 in the nitrogen
dimensions. The spectral windows in both indirect dimen-
sions were set to 1885.7 Hz. This was done to make the data-
sets more suitable for comparison with radially sampled
data. Subsets of the sampled data points in this master data-
set were extracted to study non-uniform sampling. For BPR
a 45� projection was also collected using the Varian projec-
tion data collection method incorporated in BIOPACK
(ghn_co). Note that quadrature detection also yields the cor-
responding negative projection [4]. The Varian implementa-
tion determines the spectral width of the projection from
that of the first indirect dimension (carbon in this case).

The ubiquitin sample was prepared in a 50 mM NaPO4

buffer at pH 6.5 with added 1 mM NaN3 solution. The
ubiquitin sample concentration was ca. 1 mM, and the data
was collected at 23 �C.

3.2. Synthetic data

A synthetic two-dimensional dataset was created, repre-
senting the two indirect dimensions of a 3D dataset. The
linewidth of the peaks was set to 20 Hz in each dimension.
The dwell times in the two dimensions were set to corre-
spond to spectral widths of 2000 Hz. The maximum num-
ber of points in each dimension was set to 128. The
number and position of synthetic peaks together with the
amount of noise varied for the different applications. Data-
set A has peaks at F1 and F2 frequencies of (�170, 0) and
(200, �80) Hz, respectively, with amplitudes of 10. No
noise was added to this dataset. The corresponding cross-
section at 63� with respect to the F2 axis, was also created
for this dataset. Dataset B includes four additional peaks
appearing at F1 and F2 coordinates of (�650, �700),
(�685, �700), (500, �700), (360, 850) Hz. The amplitudes
of all peaks were set to 10 except the peak at (500, �700)
Hz which was set to �10. In this dataset Gaussian noise
with an average of 0 and standard deviation of 2 was also
added. Three instances of dataset B were created using dif-
ferent pseudo-random noise sequences.

3.3. Sampling schedules

The non-uniform sampling schedules were obtained
using the sampsched2d application within the Rowland
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NMR Toolkit. The sampling schedules for the synthetic
dataset were calculated using 381 randomly sampled data
points with exponentially weighted distributions corre-
sponding to linewidths of 20, 10, and 0 Hz in both dimen-
sions, the latter producing a completely random sampling
schedule. The sampling schedule for the experimental data
used 249 data points with exponentially weighted distribu-
tions corresponding to line widths of 15 and 25 Hz in the
carbon and nitrogen dimensions, respectively. A more
detailed account of this sampling method has previously
been reported [21].

3.4. Data processing

All data processing was done using the Rowland NMR
Toolkit [22]. The back-projection spectrum of the synthetic
data was reconstructed using a program called planemath

written for the Rowland NMR Toolkit. The aim parameter
was used here in all MaxEnt reconstructions rather than
the k parameter [23]. Aim is related to C0 by the expression
C0 = N · aim2. The reconstruction of synthetic dataset A
used 0.1 for both def and aim, and the final output size
of the spectrum was 128 in both dimensions. The MaxEnt
reconstruction of synthetic dataset B had an output size of
512 in both dimensions and was reconstructed using values
of 2.0 and 0.5 for aim and def, respectively.

For the experimental data the direct dimension of the
HNCO experiment was processed by zero filling to 2048
(from 512) followed by DFT. In order to facilitate the com-
parison of different datasets, they were all extended to 512
data points in the indirect dimensions. The MaxEnt recon-
struction of the experimental data employed values of 4.0
and 1.0 for aim and def, respectively.

The BPR algorithm implemented in planemath deter-
mines the spectral values at coordinates (x1,x2) by using
linear interpolation to estimate the value of Pa (x1 si-
na + x2 cosa). The addition of the individual back-project-
ed planes was also performed using planemath.

3.5. Data analysis

Processed spectra were peak-picked and assigned using a
program written for the Rowland NMR Toolkit (2dpeak).
A peak was defined as a maximum in the frequency domain
with respect to all neighboring data points. The detected
peaks were fitted to Lorentzian lineshapes using the nonlin-
LS program from the NMRPipe software package [24].
The fitted frequencies and linewidths were used as quality
measures. The root-mean-square (rms) error of the fitted
frequency, compared to a reference value is reported. The
reference values for the synthetic data were the known
input frequencies, for the experimental data the fitted fre-
quencies obtained using the master dataset were used,
together with the average linewidth in each dimension.
For the synthetic data a splitting parameter was used to
characterize the separation of two nearly overlapping
peaks. The splitting parameter is defined as: D = 1 � 2C/
(A + B), where A and B are the peak amplitudes of the
two peaks and C is the lowest point between them. Another
measure of quality used is the signal to noise ratio (S/N)
which is the ratio of the fitted amplitude of the smallest real
peak to the standard deviation of the noise. The noise
region was defined as areas other than ±30 Hz from known
peaks. For the experimental data the weak peak was deter-
mined as the weakest detectable/assignable peak in the
master dataset. The signal to artifact ratio, S/A, is calculat-
ed as the ratio of the weakest peak (signal amplitude) and
the highest artifact peak.

4. Results

In Fig. 1, we show the differences between various
approaches to radial sampling. In this section synthetic
data will be used to study the impact of these methods
on spectral reconstruction. Subsequently the impact of
introducing a degree of randomness will be shown. Finally,
experimental data will be used to directly compare MaxEnt
reconstruction of irregular sampling with BPR of radially
sampled data.

4.1. On vs. off-grid

A distinguishing characteristic of BPR spectra are the
ridge artifacts, illustrated in Fig. 2 for the noiseless synthet-
ic dataset A. The contour levels were chosen to clearly
show the most significant ridge artifacts. These artifacts
are due to ambiguities introduced by the sampling scheme
and we see, by comparison of panels A and B that the BPR
is nearly identical to MaxEnt reconstruction when the same
data samples are used. Note however that the peaks are
more clearly defined in the MaxEnt reconstruction; in the
BPR spectrum the real peak at F1 = �170 Hz, F2 = 0 Hz,
has similar amplitude to the artifact peak with same F1 fre-
quency at F2 = 80 Hz, whereas in the MaxEnt spectrum the
artifact peak is significantly weaker than the real peak.

In addition to the expected ridges passing through the
peaks at angles perpendicular to the cross-section angle
we also note the presence of folded ridges due to the small
spectral window in the off-axis projection; the dwell time
between two data points in this projection corresponds to
a spectral width of 1788 Hz, which corresponds to spectral
widths in F1 and F2 of about 800 and 1600 Hz, respectively.
To maintain radial sampling with a larger spectral width in
the off-axis projection we can no longer sample on-grid. In
panel C we see that off-grid sampling has the desired effect
on the spectrum. This mode of sampling cannot be recon-
structed using the Rowland NMR Toolkit implementation
of MaxEnt due to technical difficulties associated with pro-
cessing off-grid data. This sampling scheme may, however,
be approximated by an on-grid version where data points
on the grid near the ray are collected (see Fig. 1C). Such
a cross-section cannot be transformed using conventional
processing schemes, but can be reconstructed using Max-
Ent. Panel D shows that this sampling method similarly
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Fig. 2. Back-projection (A and C) and MaxEnt (B and D) reconstruction using three projection angles (0�, 90� and 63.43�). (A) Back-projection
reconstruction of on-grid data, where the tilted projection is collected at integer increments of the Nyquist grid in t1 and t2 of 1 and 2, respectively. (B)
MaxEnt reconstruction using the same sampling scheme as A. (C) Back-projection reconstruction using the same projection angles sampled off-grid. (D)
MaxEnt reconstruction using the on-grid approximation of the samples used in C. (C and D) Larger spectral widths, compared to A and B, along the
projection and therefore avoid aliasing artifacts.
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suppresses folding artifacts and is a good approximation of
off-grid sampling. The presence of folding artifacts at high
frequencies in the on-grid method is due to the distance
between two neighboring points along this cross-section
never being as close as those in the off-grid sampling
method. Note, however, that off-grid radial sampling
requires more data samples to achieve the same resolution
as the on-grid methods. Also we note again that the peak
positions are better defined in the MaxEnt reconstruction.

4.2. Regular vs. random

It is clear that the source of ridge artifacts is closely
related to the regular nature of radial sampling and the
associated ambiguities introduced, irrespective of the data
samples being collected on or off-grid or the processing
method used. Destroying this regularity by introducing a
degree of randomness should therefore diminish these arti-
facts and improve spectral quality. Fig. 3 shows the distri-
bution of sampling artifacts for a non-decaying peak of 0
frequency, computed using the DFT. The figure illustrates
the relatively high intensity of the ridge artifacts when data
is sampled along specific angles, and how these are dimin-
ished by removing the regularity of the data sampling.
Random samples, however, cannot be reconstructed using
conventional processing methods. The MaxEnt method
therefore appears to be a suitable platform for the compar-
ison of these different modes of sampling.

Dataset B was used to systematically study the impact of
sampling on spectral quality. Recovery of the known
parameters of the synthetic peaks was used to test the spec-
tral qualities of the reconstructions. Two of the peaks are
placed close to each other to measure resolution. One neg-
ative peak is inserted along the same dimension as the two
overlapping peaks to test the ability of the methods to deal
with a few negative peaks in the presence of many positive
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Fig. 3. Fourier transform of sampled data points according to on-grid radial sampling of three projections at 0�, 90�, 63.43� (A), exponentially weighted
random sampling corresponding to a decay of 20 Hz (B) and random sampling (C), showing the artifact distribution of a single peak with 0 frequency and
0 linewidth. The same contour levels are used in all spectra. Spectral widths are from dataset A (see Section 3).
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ones. Peaks close to the edges of the spectrum are also used
to test for aliasing. Synthetic noise was added, as described
in Section 3, to measure sensitivity. The sampling methods
used in addition to the on-grid approximation to radial
sampling are; random sampling with an exponentially
weighted distribution corresponding to the line width of
the peaks (20 Hz), half the line width of the peaks (weight-
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Fig. 4. MaxEnt reconstruction of synthetic data using 381 data points accordin
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number of data samples was collected for each method.
Note that all data samples are on-grid. The data were gen-
erated three times for each method using three different
pseudo-random sequences of the added noise. Fig. 4 shows
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ing noise sequence (using the same random seed). The fig-
ure shows contour levels at 5 times the standard deviation
of the noise in the spectrum and higher. We see the clear
presence of ridge artifacts at these contour levels in panel
A. The resolution/sensitivity trade-off of the different ran-
dom distributions of sample points is also amply
illustrated.

Table 1 lists the computed measures of spectral quality
together with average values and the corresponding stan-
dard deviations. The table includes data for frequency
accuracy reported as the average rms error of the frequency
of each peak fitted to a Lorentzian lineshape (see Section 3)
compared to that of the input frequency. Similarly average
fitted values for line width are given. S/N and S/A are also
reported as described in Section 3. Note that the noise dis-
tribution in the on-grid approximation of radially sampled
data does not have a Gaussian distribution due to the ridge
artifacts. We also note that the negative peak in the recon-
struction of this sampling method is not identified as a peak
as it is present only as a saddle point, being a maximum in
one dimension and a minimum in the other. This may lead
to overestimated values of the S/N and S/A ratios for this
method. Values for the average evolution time for each
sampling scheme are also reported. The results for a hybrid
method are also included in the table but not shown in
Fig. 4. This method involves sampling along 0� and 90�
cross-sections as in the radial sampling method but the
data samples corresponding to the off-axis cross-section is
distributed according to an exponentially weighted random
scheme with a decay corresponding to 20 Hz in both
dimensions.

4.3. Comparison of MaxEnt reconstruction vs. BPR for

experimental data

The on-grid approximation of cross-sections enabled us
to compare radial sampling with random based sampling
using the same reconstruction technique, eliminating possi-
ble biases arising from the specific reconstruction algorithm
used. Practically, however, it is of interest to compare radi-
ally sampled data reconstructed using BPR with a non-reg-
ular sampling method reconstructed using MaxEnt, using
experimental data. Here we use a triple resonance NMR
experiment (HNCO) on a readily available protein (ubiqui-
tin). An extensive uniformly sampled dataset was collected
and is used as a reference for comparison with the radially
and non-uniformly sampled datasets. A subset of this data
was sampled non-uniformly, based on an exponentially
decaying distribution, and the spectrum was reconstructed
using MaxEnt (see Section 3). A separate off-grid projec-
tion was collected at 45�, using the spectral width of the
first indirect dimension (13C). These data were combined
with the 0 and 90� cross-sections from the master dataset
for BPR. Both fast methods (with respect to the master
data set) contain the same number of sample points, requir-
ing roughly the same experiment time. The uniformly sam-
pled dataset in Fig. 5 consists of 6656 data points, whereas
the two fast methods use only 249 data points, which is
3.7% of the master dataset. The results are shown in
Fig. 5 and Table 2. The cross-sections across the spectra
in Fig. 5 are at the nitrogen frequency of the weakest peak
found in the master dataset.

From the spectral reconstructions we see that BPR gives
rise to several artifacts and fails to detect a weak peak in
the presence of stronger peaks due to the base line artifacts
(see cross-section in Fig. 5). Table 2 reveals an improve-
ment on all measured spectral qualities, when using expo-
nentially weighted random sample points reconstructed
using MaxEnt compared to radial sampling reconstructed
using BPR. We note that the comparatively low S/A ratio
of the DFT of the linearly sampled data is due to the high-
est artifact being a truncation artifact.

5. Discussion

Reducing experiment time in NMR has recently been
the focus of many investigations [2,6,9–11,17,25]. Coupling
evolution times has emerged as a popular method to
achieve this. This idea started with the accordion experi-
ment [26], where the evolution period is coupled to a mix-
ing period. This was formally extended to coupled
evolution periods in the pseudo multiple-quantum spec-
troscopy experiment [27]. This experiment presaged the
fundamental concepts behind RD experiments. These
methods subsequently evolved into RD [5] and GFT [6]
methods. The latest development has been the introduction
of BPR [4], which in contrast to its predecessors attempts
to reconstruct the full multidimensional spectrum from a
few reduced dimensionality spectra. There are also recent
developments involving methods which are not restricted
by coupling of evolution times in the time domain
[13,19,28], referred to here as non-uniform sampling
methods.

In this study, we have shown that the two general
approaches (coupled vs. non-uniform sampling) are closely
related and differ only in the sampled time points. We have
shown that radial sampling can be used in conjunction with
either BPR or MaxEnt reconstruction. We find however
that the spectral reconstruction using MaxEnt is superior
to that using BPR. It is also clear from the results that reg-
ularities in the data samples lead to an abundance of arti-
facts which can make the identification of weak peaks
difficult and lead to misrepresentation of peaks with differ-
ent phases. Removing the regularities in the data sampling
solves these problems and provides a degree of freedom in
choosing data samples to enhance resolution or sensitivity.
We see improved frequency accuracy in radial sampling
compared to random sampling. We attribute this to the
highly resolved 0� and 90� projections. This is confirmed
when random sampling is used in conjunction with radial
sampling, in the hybrid method. The average evolution
period follows the hybrid properties confirming that the
S/N and linewidths are closely related to this parameter,
independent of frequency accuracy. The apparent relation-



Table 1
Spectral quality from synthetic data reconstructed with MaxEnt using 381 data points sampled according to different strategies

Sampling method Peaks
found

Frequency error (Hz) Line width (Hz) S/N S/A Splitting
parameter

Average evolution
time (ms)F1 F2 F1 F2

Radial 5 0 0.61 0.25 0.66 0.13 26.78 5.09 33.06 1.84 7.32a 0.59 1.01 0.10 0.32 0.05 35.2

5 0.53 0.51 28.48 30.93 7.72 1.05 0.36
5 0.90 0.71 21.05 34.12 6.64 0.90 0.27
5 0.41 0.77 30.80 34.12 7.59 1.09 0.34

Exponentially
weighted random,
20 Hz decay

6 0 0.85 0.09 1.07 0.50 37.08 0.75 38.14 1.06 10.74 0.45 2.46 0.43 0.14 0.04 25.2

6 0.83 1.20 36.22 38.75 10.88 2.19 0.17
6 0.94 1.48 37.54 36.91 11.10 2.96 0.16
6 0.77 0.52 37.48 38.76 10.25 2.24 0.09

Exponential
weighted random,
10 Hz decay

6 0 1.18 0.12 1.07 0.18 26.59 1.16 30.83 1.05 7.49 0.44 1.69 0.08 0.42 0.07 36.7

6 1.30 0.87 26.11 30.85 7.79 1.64 0.45
6 1.16 1.11 25.76 29.77 7.70 1.79 0.47
6 1.06 1.23 27.92 31.88 6.98 1.65 0.34

Random 6 0 2.37 1.50 2.10 0.60 21.96 1.76 25.98 2.72 4.57 0.04 0.87 0.06 0.59 0.06 50.9

6 2.23 2.77 20.57 24.73 4.57 0.85 0.65
6 0.93 1.89 21.39 29.10 4.61 0.83 0.60
6 3.93 1.63 23.93 24.11 4.53 0.93 0.53

Hybrid, radial (0�,
90�) plus
exponentially
weighted random,
20 Hz decay

5 0 0.75 0.50 0.90 0.07 32.78 1.75 31.06 1.38 10.11 0.20 1.46 0.05 0.26 0.03 28.3

5 0.35 0.98 32.76 29.64 10.12 1.44 0.28
5 1.31 0.89 34.53 31.15 10.30 1.43 0.23
5 0.60 0.84 31.04 32.40 9.90 1.51 0.27

Data were measured for three reconstructions each with a different random noise sequence maintaining the same noise level. Radial refers to the on-grid approximation of off-grid radial sampling.
Average values are given in bold and standard deviations are given in italics. The negative synthetic peak is not detected using radial sampling, as it appears as a saddle point.

a Signal to noise value may be overestimated as one of the peaks is not detected.
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Fig. 5. Spectra obtained from experimental data (HNCO) for ubiquitin obtained using uniform, non-uniform and off-grid radial sampling. Figures show a
nitrogen and carbon planar cross-section at a proton frequency of 8.14 ppm. The one-dimensional cross-sections through the plots are of the carbon row
at the weakest peak (nitrogen frequency of 120.5 ppm). The contour levels were chosen to show the weakest peak. The cross-sections are scaled so that the
highest and lowest amplitudes are aligned across the three spectra. (A) Using a full dataset, 6656 data points, processed using DFT (B) using 249 randomly
sampled data points with an exponentially weighted distribution, reconstructed using MaxEnt (C) using 249 data radially sampled off-grid data points, at
0�, 90� and 45� projection angles, reconstructed using the back-projection method.

Table 2
Spectral quality from experimental data

Data samples Sampling method Reconstruction method 13C LW (Hz) 15N LW (Hz) 13C Freq. error (Hz) 15N Freq. error (Hz) S/N S/A

6656 Uniform DFT 13.8 26.2 0.0 0.0 85.6 1.9
249 Non-uniform MaxEnt 14.7 22.7 0.6 1.5 12.01 1.7

Radial BPR 27.5 39.2 5.1 1.0 6.30 0.7

Uniform refers to the full dataset (6656 data points). Non-uniform refers to sampling according to an exponentially weighted distribution (249 data points)
corresponding to decay rates of 15 Hz for carbon and 25 Hz for nitrogen. Radial refers to sampling at angles 0�, 45� and 90� (249 data points).
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ship between these properties raises concern for the use of
off-grid sampling in BPR, which will bias the sampling
towards shorter evolution periods (see Fig. 1). It is there-
fore reasonable to conclude there is a loss in resolution
per sample point when sampling off-grid using this method.
Indeed this problem will increase with the collection of
additional projections. Considering that recent results sug-
gest the need for very high number of projections for accu-
rate reconstruction, the efficiency of using this method
becomes questionable [8]. Methods such as the filtered
back-projection may to some extent correct for the effective
line broadening, but only with a loss in sensitivity per unit
time.

The experimental results confirm those using the syn-
thetic data but also highlight some of the additional prob-
lems with off-grid sampling in conjunction with BPR. The
expected gain in frequency accuracy using radial samples is
not reproduced in the experimental results. This can be
explained by analyzing the experimental data, in Fig. 5
for example (panels A and B) we see two peaks at a carbon
frequency of ca. 174.5 ppm. Since one of these peaks has a
higher intensity, it is apparent that its ridge has moved the
peak position of the weaker peak (Fig. 5C). This explains
the larger error in the carbon dimension in Table 2. This
presents a possible pitfall, where the potential for high fre-
quency accuracy of radially sampled data result in a falsely
inflated confidence in the actual frequency accuracy. The
synthetic data also shows that the linewidth and resolution
is related to the average evolution time, but we note that
this is not the case for the experimental results where the
average evolution periods for the non-uniformly and radi-
ally sampled data are 22 and 25 ms, respectively (for the
plane shown in Fig. 5). The discrepancy is most likely
due to the same reasons as the discrepancy in frequency
accuracy, i.e. overlap of ridges with real peaks. Another
potential source of the discrepancy between the synthetic
and experimental results may be the non-Lorentzian line-
shape of the two-dimensional peaks, when reconstructed
using BPR. It is true that each projection will maintain a
Lorentzian lineshape, but this is not necessarily true for
the back projection reconstruction.

Finally we note that in this work we have used a simple
heuristic for generating suitable sampling schedules. While
we have shown that this heuristic leads to more efficient
data collection than BPR approaches, we have not shown
that the schedules constructed are optimal in any sense.
Preliminary evidence suggests that there is substantial
room for improvement in sampling schedules, and thus
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the improvements that we show here over BPR approaches
are likely to be conservative. Clearly parameters such as
sample concentration, molecular size (which impacts line-
width), field strength, resonance frequencies and the nature
of the experiment being performed are all factors that can
influence the design of an optimal sampling schedule [29].
Exploration of these factors in the design of optimal sam-
pling schedules is the subject of ongoing investigations.

6. Concluding remarks

Our comparison of MaxEnt and BPR spectra demon-
strates that the artifacts commonly observed in the latter
results from the regular nature of the data sampling. For
equivalent data, however, MaxEnt reconstructions are gen-
erally superior to BPR. We also show that the time savings
achieved by the sampling methods employing coupled evo-
lution periods (i.e. projections) come at a price, either a loss
in resolution or the introduction of artifacts, and frequent-
ly both. The artifacts are intimately tied to the regular nat-
ure of the sampling, and we demonstrate that introducing
randomness into the selection of sampling points greatly
diminishes the artifacts, enabling far more efficient data
collection. Based on these findings we conclude that non-
uniform sampling based on a random distribution com-
bined with MaxEnt reconstruction is preferable to RD or
BPR. Further improvements can be anticipated through
the design of optimal sampling schedules.
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